Liapunov Functionals and Periodicity in a System of Nonlinear Integral Equations
نویسندگان
چکیده
In this paper, we construct a Liapunov functional for a system of nonlinear integral equations. From that Liapunov functional we are able to establish the existence of periodic solutions to the system by applying some well-known fixed point theorems for the sum of a nonlinear contraction mapping and compact operator.
منابع مشابه
Solving infinite system of nonlinear integral equations by using F-generalized Meir-Keeler condensing operators, measure of noncompactness and modified homotopy perturbation.
In this article to prove existence of solution of infinite system of nonlinear integral equations, we consider the space of solution containing all convergence sequences with a finite limit, as with a suitable norm is a Banach space. By creating a generalization of Meir-Keeler condensing operators which is named as F-generalized Meir-Keeler condensing operators and measure of noncompactness, we...
متن کاملA computational method for nonlinear mixed Volterra-Fredholm integral equations
In this article the nonlinear mixed Volterra-Fredholm integral equations are investigated by means of the modied three-dimensional block-pulse functions (M3D-BFs). This method converts the nonlinear mixed Volterra-Fredholm integral equations into a nonlinear system of algebraic equations. The illustrative examples are provided to demonstrate the applicability and simplicity of our scheme.
متن کاملA Generalization of the Meir-Keeler Condensing Operators and its Application to Solvability of a System of Nonlinear Functional Integral Equations of Volterra Type
In this paper, we generalize the Meir-Keeler condensing operators via a concept of the class of operators $ O (f;.)$, that was given by Altun and Turkoglu [4], and apply this extension to obtain some tripled fixed point theorems. As an application of this extension, we analyze the existence of solution for a system of nonlinear functional integral equations of Volterra type. Finally, we p...
متن کاملA Legendre-spectral scheme for solution of nonlinear system of Volterra-Fredholm integral equations
This paper gives an ecient numerical method for solving the nonlinear systemof Volterra-Fredholm integral equations. A Legendre-spectral method based onthe Legendre integration Gauss points and Lagrange interpolation is proposedto convert the nonlinear integral equations to a nonlinear system of equationswhere the solution leads to the values of unknown functions at collocationpoints.
متن کاملSolving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system throug...
متن کامل